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The bond valence approach is used to model the characteristic
out-of-center electronic distortions around 4° transition metal cat-
ions in octahedral coordination. The distortions are influenced not
only by the electronic structure of the cation but also by the struc-
ture of the bond network, by lattice incommensurations, and by
cation-cation repulsion. These latter effects often determine
whether a distortion will occur and, if so, in what direction. Once
the direction of an expected out-of-center distortion is known, its
magnitude can be modeled using modified bond valence network
equations, where certain bonds are weighted to take into account
the intrinsic inequality of the bonds in such a distorted coordina-
tion. The arguments are illustrated by examples. © 1995 Academic
Press, Inc.

INTRODUCTION

Octahedrally coordinated d9 transition metal cations
such as Ti**, Vv, and Mo®* are usually found in dis-
torted environments in which the cation is displaced from
the center of the octahedron of ligands.

Similar distortions do not occur in the environments of
main group elements of the same charge and size, as can
be seen from a comparison between the structures of
transition metal cations and their main group analogues.
There are many examples, but two will suffice to make
the point. The mineral titanite (sphene, CaTiQSiO,) (1)
has Ti** with distorted octahedral coordination (space
group P2 /a, Ti** site symmetry = 1} whereas its Sn ana-
logue, the mineral malayaite (CaSn0OSi0Q,), which has the
same structure, crystallizes in the higher symmetry space
group A2/a with Sp on a crystallographic inversion cen-
ter that permits no out-of-center distortion.

A more dramatic example is KTiOPO, (2). Here, re-
placement of Ti** by Sn** (3) not only removes the dis-
tortion, but also decreases the second harmonic genera-
tion output to about 2% of that in KTiOPQ,. In this case,

1 To whom cotrespondence should be addressed at: Department of
Earth and Space Sciences, University at Stony Brook, Stony Brook,
NY 11794-2100.
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and in other similar cases, the out-of-center distortion
around the «° transition metal is the driving force induc-
ing optic and electric properties of technological impor-
tance (4).

The purpose of this paper is to explore the factors that
influence the size and direction of these distortions. As a
guideline to check the validity of our model we have set
ourselves the task of finding a way to predict the ob-
served bond lengths. The closer our prediction is to the
observation, the more likely our analysis is to be correct.

A comparison of the out-of-center distortion found
around various 4% transition metals shows that the distor-
tion increases with increasing formal charge and de-
creases with increasing size of the cation. This is illus-
trated in Fig. 1 which shows the frequency with which
structures of a given distortion are found. Sci* (not
shown) shows no distortion. Ti** and Ta*" are found with
a bimodal distribution, some structures having no distor-
tion and others having distortions corresponding to an
out-of-center shift of about 0.15 A. Octahedrally coordi-
nated V°* is always strongly distorted and Cr®* is never
observed in octahedral coordination even though this
would be expected on the basis of its size. However, its
tetrahedral coordination can in many cases, €.g., in
Cr0,, be interpreted as a heavily distorted octahedron,
where the Cré* has moved so far toward an edge that the
two long bonds can no longer be considered part of the
coordination sphere. The same patterns can be seen in
the heavier transition metals, but with a smaller tendency
to distortion. Zr**, unlike Ti**, is always undistorted,
and Mo®*, unlike Cr®*, is in many cases found in octahe-
dral coordination.

The occurrence of out-of-center distortions by d* tran-
sition metal cations can be understood on the basis of the
second-order Jahn—Teller theorem (6-10). The energy of
the normally vacant cation 4 orbitals is lowered as the
cation becomes smaller and more highly charged. If the
energy is lowered sufficiently, the empty J orbitals are
able to mix with the filled p orbitals of the ligands. In
extended structures, this leads to a number of different
clectronic configurations with closely spaced energies
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FiG. 1. The distribution of observed valence distortion in octahe-
dral d9 cations. The continuous lines are derived from histograms (0.1
vu bin size) obtained from the 50 most accurate coordination spheres
found in the Inorganic Crystal Structure Database (5).

whose relative ordering depends on the chemical envi-
ronment. Any near degeneracy in these configurations
can usually be removed by a spontaneous distortion.
However, it is not possible to make reliable quantitative
predictions of the direction, magnitude, or even the oc-
currence of this distortion because it depends on the ex-
tended structure of the crystal. For this reason, we have
used a simple empirical model to explore what deter-
mines the nature and origin of the distortions that occcur
in particular structures.

In analyzing the distortions around a number of 4°
transition metal cations, we have discovered that the sec-
ond-order Jahn-Teller effect is not the only effect
present. We have identified at least three other factors
that work together symbiotically to stabilize the distor-
tion: bond network effects, the stresses that result from
the requirements of translational symmetry (lattice
stresses), and cation—cation repulsion. In this paper we
discuss each of these effects separately in Section 2 be-
fore showing how they combine in real ¢crystals.

Structural details of a variety of compounds containing
octahedrally coordinated d°transition metals were ex-
tracted from the Inorganic Crystal Structure Database
(11). In Table 1 these are identified by their ICSD collec-
tion numbers. We used them to develop rules for deter-
mining whether a distortion will occur, and if so, in what
direction the cation moves and how far. Finally in Sec-
tion 3 we examine how well these rules are able to repro-
duce the observed out-of-center displacements.
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2, SOURCES OF DISTORTION

In this section we discuss the four sources of distortion
that are found in compounds c¢ontaining octahedrally co-
ordinated 49 transition metal cations. In addition to the
electronically driven distortion that is the focus of this
paper, there are distortions that arise from the structure
of the bonding network (the network of nearest neigh-
bors) referred to as network distortions, there are distor-
tions that arise from structural incommensurations which
require two different parts of the structure to be strained
in order to have the same lattice spacings, and there are
distortions that arise from repulsion between second
neighbors (cation-cation or anion-anion repulsion dis-
tortions).

2.1. Distortions Caused by the Bond Network

These can be predicted using the bond valence modei
{12) which treats a crystal as an infinite array of positively
and negatively charged atoms (cations and anions) which
are characterized by their atomic valence, i.e., their for-
mal charge. Anions are connected to cations by bonds to
form a network, with the bonds treated as vectors di-
rected from the anion to the cation. Each bond is charac-
terized by a bond valence which equals the amount of
atomic valence contributed by each of its terminal atoms.
In most compounds the bond valence (s) correlates with
the bond length () through a relationship which can be
expressed as

s = explry — r)/B), tl

where ry and B are parameters whose values for many
different bond types have been tabulated by Brown and
Altermatt (13).

In most structures both the network, and the distribu-
tion of the atomic valence between the bonds, is deter-
mined by the principle of maximum symmetry, which
states that, wherever possible, all the atoms and all the
bonds will be chemically identical. This means, among
other things, that the most stable bonding network will be
one in which all the anions and all the cations are, as far
as possible, crystallographically equivalent. It also
means that the most stable coordination sphere is one in
which all the bonds have, as far as possible, the same
bond valence and hence the same bond length. The latter
condition can be expressed quantitatively by the two net-
work equations (12).

Valence-sum rule: z 5;=V; 2]
]

Equal-valence rule: >, s; = 0, 3}

loop



TABLE 1

Comparison between Predicted and Observed Bond-Valences around Transition Metal Cations and Their Main-Group Analogues

‘A B C D E F G H | J K L
TiO; compounds
Rutile (P4,/mnm) ICSD = 31321
01*-01* 0.667 0.667 0 0 0 1 1 0.667 0.667 0.698 0.698
012-01¢ 0.667 0.667 0 0 0 1 1 0.667 0.667 0.698 0.698
01'-013 0.667 0.667 0 0 0 1 1 0.667 0.667 0.639 0.639
Ti 0.030
Anatase (I4,/amd) 1CSD = 9852
012-017 0.667 0.667 0 0 0 t 1 0.667 0.667 0.725 0.725
o1r-Q 0.667 0.667 0 0 0 1 1 0.667 0.667 0.725 0.725
01'-01° 0.667 0.667 0 0 0 1 1 0.667 0.667 0.640 0.640
Ti 0.050
Brookite (Pbca) ICSD = 36,408
015-02 0.667 0.667 0 0 0 1 1 0.834 0.555 0.879 0.527
02-01! 0.667 0.667 0 0.1 0.1 1.3 0.7 0.722 0.584 0.746 (.609
02:-01* 0.667 0.667 0 0.1 0.1 1.3 0.7 0.722 0.584 0.732 0.623
Ti 0.031
AB,Oy structures
Trirutile (B = Ta, A = Co) (P4,/mnm) 1ICSD = 203,095
01'-012 0.833 0.833 0 0 0 1 1 0.833 (.833 0.864 0.793
or-0r1 0.833 0.833 v} 0 0 1 1 0.833 0.833 0.864 0.793
Q1-02 0.833 0.833 0 0 0 1 1 0.833 0.833 0.823 0.823
Ta 0.029
Co 0.009
Columbite (B = Nb, A = average of Mn, Fe, Co, Ni, and Zn) (Pbcn) ICSD = 15,856; 15,858: 15,854, 15,852; 36,290
02:-03%7 1.167 0.667 0.500 0.100 0.600 1.4 0.6 1.236 0.545 1.329 0.378
0o1'-03? 0.917 0.667 0.250 0 0.250 1.4 0.6 1.030 0.545 1.025 0.627
031-01¢ 0.667 0.917 —-0.25¢ 0.100 —0.150 1 1 0.908 0.735 0.882 0.610
Nb 0.10
Brannerite (B = V, A = average of Ca and Cd) (C2/m) ICSD = 21,064; 9714
021-012 1.167 0.917 0.250 0.100 0.350 1.6 0.1 1.518 0.093 1.536 0.100
o1'-03! 0.917 0.667 0.250 0.100 0.250 1.6 0.7 1.387 0.519 1.368 0.542
032-03? 0.667 0.667 0 0 0 1 1 0.741 0.741 0.792 0.792
A% 0.043
_ ABOQ; structures
MgTiO, (llmenite structure) {R3) ICSD = 65,794
01*+-013 0.667 0.667 0 0.081 0.081 1.3 0.7 0.867 0.467 0.870 0.477
015-01! 0.667 0.667 0 0.081 0.081 1.3 0.7 0.867 0.467 0.870 0.477
015-01? 0.667 0.667 0 0.081 0.081 0.7 0.867 0.467 0.870 0.477
Ti 0.007
Mg 0.054
LiNbO; {R3c) ICSD = 61,118
014-01? 0.667 0.667 0 0.081 0.081 1.4 0.6 1.167 0.500 1.098 0.554
Oo1°-01t 0.667 (.667 0 0.081 0.081 1.4 0.6 1.167 0.500 1.098 0.554
0156-012 0.667 0.667 0 0.081 0.081 1.4 0.6 1.167 0.500 1.098 0.554
Nb 0.061
Li 0.047
Rotationally distorted perovskites
CaTi0, (Pcmn) ICSD = 37,263 a,/a, = 0.946
01-01? 0.706 (.706 0 0 0 1 1 0.706 0.706 0.694 0.694
021-02°% 0.647 0.647 0 0 0 1 1 0.647 0.647 0.685 0.685
023-027 0.647 0.647 0 0 0 1 1 0.647 0.647 0.678 0.678
Ti 0.029
Ca 0.073
NaTa0, (Pcmn) ICSD = 23,329 as/ap = 0,969
o207 0.833 0.833 0 ] 0 1 1 0.833 0.833 0.870 0.870
012-013 0.833 0.833 0 0 0 1 1 0.833 0.833 0.852 0.852
02'-02° 0.833 0.833 0 0 0 1 1 0.833 0.833 0.842 0.842
Ta 0.024
Na 0.049
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TABLE 1—Continued
A B C D E F G H I ¥ K L
NaNbQ, (Pbcm) ICSD = 23,239 a,/ag = 0.973
037-047 0.830 0.833 —-0.003 0 —0.003 1.4 0.6 1.078 0.549 1.163 0.584
041-03! 0.833 0.830 0.003 0 0.003 1 1 0.916 0.770 0.902 0.688
02-01! 0.856 0.817 0.039 0 0.039 1 1 0.850 0.837 0.859 0.830
Nb 0.051
Na 0.065
_ Undistorted perovskite
SrTi0; (Pm3m)  (16) aslag = 1.001
o1-o1 0.667 0.667 0 0 0 1 1 0.667 0.667 0.691 0.691
o1-01° 0.667 0.667 0 0 0 1 1 0.667 0.667 0.691 0.691
or-opr 0.667 0.667 0 ] Q 1 1 0.667 0.667 0.691 0.691
Ti 0.024
Sr 0.009
Out-of-center distorted perovskite
BaTiO, (P4mm) ICSD = 23,758 as/ag = 1.061
o1'-0f! 0.667 0.667 0 0 0 1.3 0.7 0.867 0.467 0.872 0.385
0202 0.667 0.667 0 ] 0 1 1 0.667 0.667 0.606 0.606
025-02 0.667 0.667 0 0 0 1 1 0.667 0.667 0.606 0.606
Ti 0.060
_ Ba 0.065
KTa0, {Fm3m) (13) a/up = 1.086
or-on 0.833 0.833 ] H 0 1 1 0.833 0.833 0.818 0.818
oP-0Pr 0.833 0.833 0 0 0 1 1 0.833 0.833 0.818 0.818
or-or° 0.833 0.833 0 0 0 1 1 0.833 0.833 0.818 0.818
Ta Q.015
K 0.073
KNbO; {Amm2) ICSD = 9533 aslag = 1.093
02-02! 0.833 0.833 ] 0 0 1.4 0.6 1.167 0.500 1.107 0.498
02:-02? 0.833 0.833 0 0 0 1.4 0.6 1.167 0.500 1.107 0.498
o1-on 0.833 0.833 0 0 0 1 1 0.833 0.833 0.794 0.794
Nb 0.041
K 0.072
Titanyl and vanadyl compounds (in the following compounds the axial bonds that form the chain are listed first)
V205 (Pnma) ICSD = 60,767
O1'-0ot1t 1.000 1.000 0 0 0 1.6 0.1 1.882 0.118 1.847 0.069
0302t 1.000 0.667 0.333 0 0.333 1.6 0.7 0.998 0.518 1.068 0.560
024024 0.667 0.667 0 0 0 1 1 0.741 0.741 0.818 0.818
v 0.061
B-Sb0OPO, {C2/e) ICSD = 201,743
o1r'-o01? 1.000 1.000 0 0 0 1 1 1.000 1.000 1.112 1.112
022024 0.750 0.750 0 0 0 1 1 0.750 0.750 0.889 0.889
034032 0.750 0.750 0 0 0 1 1 0.750 0.750 0.874 0.874
Sb 0.126
P 0.037
a-NbOPO, (P4/n) ICSD = 24,110
or-or 1.000 1.000 0 0 0 1.4 0.6 1.400 0.600 1.415 0.330
027-028 0.750 0.750 0 0 ] 1 1 0.750 0.750 0.854 0.854
02602 0.750 0.750 0 ] 0 1 1 0.750 0.750 0.854 0.854
Nb 0.140
P 0.022
a-VOPOQ, (P4ln) ICSD = 629
o1'-on 1.000 1.000 0 ] 0 1.6 0.1 1.882 0.118 1.836 0.055
021-02? 0.750 0.750 0 0 0 1 1 0.750 0.750 0.776 0.776
023024 0.750 0.750 0 0 0 { } 0.750 0.750 8.776 0.776
A% 0.038
P 0.072
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TABLE 1—Continued

A B C D E F G H 1 1 K L
B-VOPO, (Pnma) ICSD = 9413
04043 1.000 1.000 0 0 i 1.6 0.1 1.883 0.118 1.902 0.119
023-03! 0.750 0.750 0 0 0 1.6 0.7 0.910 0.611 0.872 0.766
O1:-OI8 0.750 0.750 0 0 0 1 1 0.740 0.740 0.798 0.798
v 0.074
P 0.084
CaTiOSiO, (P2/a) ICSD = 12,131
o1'-01* 0.779 0.779 0 0 0 1.3 0.7 1.013 0.545 1.140 0.650
o420 0.649 0.649 0 0 0 1 1 0.649 0.649 0.632 0.622
03'-05° 0.572 0.572 0 0 0 1 1 0.572 0.572 0.584 0.567
Ti 0.069
Si 0.037
Ca 0.053
KTiOPO, (Pn2,ia) ICSD = 20,970
05-01! 0.758 0.598 0.160 0 0.160 1.3 0.7 0.990 0.456 1,292 0.405
0208 0.599 0.757 —0.159 0 -0.159 1.3 0.7 0.729 0.532 0.674 0.645
O80T 0.686 0.603 0.083 0 0,083 1 1 0.688 0.606 0.627 0.534
063-05! 0.768 0.768 0 0 0 1.3 0.7 0.997 0.538 1.208 0.472
09-010" 0.611 0.611 0 0 o | 1 0.612 0.612 0.668 0.618
042-03' 0.635 0.607 0.028 0 0.027 1 1 0.635 0.607 0.642 0.538
Ti 0.118
P 0.028
K 0.084

Note. (A) Terminal atoms: the first number is the atom identifier, the superscript is the symmetry operator. The two terminal atoms on the same
line are on opposite corners of the octahedron; (B and C) Predicted bond valences using the unweighted network equations {[2] and [3]); (D)
Distortion vector D predicted from bond valences (Column B and C); (E) Distortion vector E predicted from the cation—cation repulsions; (F)
Resultant distortion vector; (G) and H) Weights assigned to the bonds; (1) and J) Predicted bond valences using weighted network equations (Eqs.
[4]and [5]}; K} and L} Observed bond valences, The standard deviation between the observed and predicted bond valences is given in col. J on the

last lines of each entry.

where V; is the atomic valence of atom i and, s; is the
bond valence between atoms i and j. The valence sum
rule (Eq. [2]) requires that at each atom the sum of the
bond valences equal the atomic valence. 1t is less clear
that Eq. [3] leads to the condition that the valences of the
bonds incident at a given atom should be as equal as
possible, but this can be demonstrated (14). Once the
topology of the bond network is known, the network
equations lead to a unique distribution of the atomic va-
lences between the bonds. Equation [1] can then be used
to predict the fengths of the bonds (ideal bond lengths).

Although observed structures tend to form bond net-
works in which all the ions (particularly the anions) are
equivalent and all the bonds have the same valence, it is
certainly possible to construct networks in which this is
not the case. Figure 2 shows two networks both corre-
sponding to a compound with the formula A2t B3T 0. In
both networks all the cations are 6-coordinate and the
anions 3-coordinate. In network (a), all the 02~ ions are
equivalent, all the bonds formed by A2* are the same, and
all the bonds formed by B’ are the same. This is the
network that would be expected from the principle of
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FIG. 2. Finite bond network graphs for AZ*B3" 0, structures; (a)

graph of trirutile; (b} graph of columbite and brannerite. The numbers
are bond valences predicted using Egs. [2] and [3].
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maximum symmetry and it is the network adopted, for
example, by ZnSb,Og which has the trirutile structure,
Network (b} differs from (a) in that two A~0 bonds have
been interchanged with two B-O bonds. The coordina-
tion numbers are still the same, but the anjons are no
longer equivalent and the bonds around each cation are
no longer the same. This network is adopted by ZnV,04
(brannerite structure) and shows that the tendency of V*+
to favor a distorted environment is sufficiently strong so
that it results in the adoption of a bond network that is
itself intrinsically distorted. As we shall see below, the
intrinsic distortion of the network and the second-order
Jahn-Teller distortion of V3* are mutually supportive.

Ideal bond lengths determined in this way are close to
those found in most compounds whose coordination
spheres show no large distortion, and they provide a use-
ful reference from which to measure the distortions found
in the d° transition metal compounds (see columns B and
C in Table 1). Since the bond—valences are measures of
the strength of bonding, it is convenient to make the com-
parison between the ideal and the observed structures in
terms of their bond valences rather than their bond
lengths. For this purpose, in the structures examined in
this study, observed bond valences were calculated from
the observed bond lengths using Eq. [1] with the parame-
ters of (13), and these were compared with the ideal bond
valences calculated using Eqs. [2] and [3]. The size of an
out-of-center distortion (whether predicted or observed)
can be expressed by a vector D, whose components cor-
respond to the differences between the valences of pairs
of trans bonds, viz.: P = {s(x) — s(—x), s(¥) — s(—y),
5(z) — s(—2)}. The distortion vector thus gives both the
magnitude and the direction of the distortion relative to x,
¥, and z axes chosen parallel to the bonds in the octahe-
dron. The distortion calculated from the bond valences
predicted using the network equations (Egs. [2] and [3])
is called the ‘‘network distortion.”’ It reflects the asym-
metry in the bond network itself and therefore includes
contributions to the distortion from second and third
bonded neighbors.

2.2, Distortions Caused by Structural
Incommensurations (Lattice Stresses)

A second cause of distortion of cation environments
arises in compounds where it is impossible to find loca-
tions for the atoms in three-dimensional space that give
bond lengths equal to the ideal bond lengths predicted
using the network equations. An example of this situation
is found in the perovskite, BaTiO;. The cubic symmetry
of the perovskite structure requires that the ratio of the
lengths of the Ba-O and Ti-O bonds be exactly V2 =
1.41, but the ratio of the ideal bond lengths calculated
from Eqs. [1], [2], and {3] i5 2.95/1.96 = 1.50. The Ba-0O
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bonds are too long and the Ti-O bonds too short for an
ideal fit. Consequently, in order to exist in the cubic
phase, the Ba—0O bonds must be compressed and the
Ti—-O bonds stretched, resulting in the sum of the bond
valences (calculated using Eq. [1]) around Ti** being only
3.64 instead of 4.00. In this phase, therefore, even though
the equal valence rule (Eq. [3]) is observed, the valence
sum rule (Eq. [2]) is not. In practice, the valence sum rule
is a more stringent requirement than the equal valence
rule so that, at lower temperatures, the Ti atom moves
out of center in its coordination sphere. This has the
effect of satisfying the valence sum rule at the expense of
the equal valence rule. The reason why this distortion
raises the valence sum lies in the form of Eq. [1]: it leads
to the distortion theorem (12) which states that, if some
of the Ti—O bonds are lengthened and others shortened in
such a way that the average bond length remains the
same, the average bond valence increases. This effect is
quite general: the environment of any cation whose
bonds are stretched as a result of structural incommen-
suration will tend to distort in order to satisfy the valence
sum rule. In the case of BaTiQs, the lattice stress distor-
tion is supported by the second-order Jahn-Teller distor-
tion. By contrast, BaSnO; remains cubic, in part because
Sn is slightly larger than Ti so the lattice stress is less,
and in part because Sn is unable to benefit from a second-
order Jahn—Teller distortion. A

The lattice stress does not show any preference for the
direction in which the distortion will occur. Usually the
direction will be determined by other mechanisms such
as the network distortion. In BaTiO;, the distortion
breaks the cubic symmetry and the distortion may occur
in any of the equivalent cubic directions. Unless limited
by other factors, the size of the distortion will be deter-
mined by the need to ensure that the valence sum rule is
satisfied around the cation.

2.3. Distortion Caused by Cation—Cation Repulsion

When two coordination octahedra share edges or
faces, the cations are brought into contact and tend to
relax by moving away from each other. The magnitude of
the repulsion between the cations is difficult to estimate,
the more so because, in the compounds examined in this
study, cation—cation repulsion was only one of the ef-
fects leading to distortion. In practice, the size of the
cation—cation repulsion is not important since the cations
are usually sufficiently well separated by other distortion
effects, but the direction is important in determining the
direction of the second-order Jahn-Teller distortion.
This is illustrated by the three polymorphs of titania
(Ti0,), rutife, anatase, and brookite. All three share the
same bond network, which is symmetric about Ti**, so
none of the strictures show network distortions. Lattice
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stress distortions are also absent. In rutile the octahedra
share opposite edges and in anatase they share four edges
arranged with 4 symmetry. In both these structures cat-
ion~—cation repulsion cancels leaving Ti*" in the center of
its octahedron. However, brookite has an asymmetric
arrangement of shared edges, the cation—cation repul-
sions do not cancel and Ti** is displaced from the center
of its octahedron. As discussed in Section 3.1, the direc-
tion of the observed displacement is determined by the
cation—cation repulsion but the magnitude is determined
by the second-order Jahn—Teller effect.

We represent the cation—cation repulsion by a distor-
tion vector, E, having a magnitude of (.14 vu (a value
chosen to give the best bond valence predictions in the
procedure described in Section 3), directed antiparaltel to
the line joining two cations whose octahedra share edges
or faces. Where an octahedron shares several edges, the
individual distortion vectors are added.

2.4. Distortions Caused by Electronic Effects

The lowering of the energy of the vacant d orbitals of a
d® transition-metal cation with increasing ionic charge
allows the orbitals to mix with the filled ligand p orbitals.
Depending on the involvement of these p electrons in
bonding to other atoms, one may have an instability
caused by a near-degeneracy of molecular orbitals close
to the Fermi level, a degeneracy which can be removed
by a spontaneous distortion (6, 7). There are two neces-
sary conditions for the occurrence of a second-order
Jahn-Teller distortion: First the energy gap between
highest occupied (HOMO) and lowest unoccupied molec-
ular orbitals (LUMO) needs to be small. Secondly, there
has to be a distortion mode of the same symmetry as the
HOMO to LUMO transition. While the latier condition is
always satisfied in octahedrally coordinated 4° transition
metals, the fulfillment of the first condition is dependent
on both the charge and size of the cation and on the way
the ligands are bonded to the rest of the structure.

In addition to the energy contributed by the electronic
distortion, the total energy of the crystal also contains
contributions from structural effects which, by the princi-
ple of maximum symmetry, are expected to work against
distortion unless any of the mechanisms discussed above
are present. Any lowering of the electronic energy
caused by distortion has to compete with a possible in-
crease in the structural energy. Figures 3 and 4 show
these energies schematically for various situations as a
function of the distortion coordinate. In order that an out-
of-center distortion can occur, either the electronic en-
ergy must be lowered by more than the structural energy
is raised (Fig. 3}, or the structural energy must itself have
a minimum that ¢corresponds to a distorted structure (Fig.
4). In cases where both types of distortion are present,
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FIG. 3. Energy versus distortion coordinate for a compound with a
symmetric structural energy: (a) total energy for a large d-p gap; (b)
electronic energy for a large d—p gap; (c) total energy for a small d-p
gap; {d} electronic energy for a small d—p gap; (¢} symmetric structural
energy.

the two effects usually support each other: one rarely
finds cases where the two effects are opposed since struc-
tures in which the various effects support each other are
intrinsically more stable than those where they are in
competition.

The magnitude of the electronic effect depends in-
versely on the size of the energy gap between HOMO and
LUMO. It will be reduced as the LUMO, which has
mostly cation d character, is lowered in cations with
higher charge and smaller size. Thus Sc** and Zr*t,
where the structural energy dominates, show no ten-
dency to distort, but V°+ and MoS*, where the electronic
energy dominates, are always distorted. In between lie
Ti*t, Ta’t, and Nb3+ which are sometimes found in dis-
torted, and sometimes in undistorted environments, de-
pending on the nature of the structural energy.

Because one needs to take into account the extended
crystal structure in calculating the electronic distortion, it

energy

distortion

FIG. 4. Energy versus distortion coordinate for a compound with an
asymmetric structural energy: (a) total energy; (b) electronic energy;
and (c) structural energy.
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is impractical to use quantum mechanics to predict its
extent. Consequently, we have adapted the bond valence
model by introducing a weighted form of the network
equations ([2] and [3])

Z 8y = V,' [4]

E Su"Cu = 0, [5]

loop

where Cj is an arbitrarily chosen weighting constant for
the bond i, being larger for bonds that are expected to be
strong and smaller for bonds that are expected to be
weak. If C; is set to 1.0 for all bonds, Egs. [4] and [5]
reduce to Eqs. [2] and [3]. The values of C; used in this
study are given in Table 2 and the way in which they are
assigned is discussed in the next section. These weights
are empirical parameters that appear to be transferable
between most compounds of a given cation, but we do
not attempt to interpret them in electronic terms.

2.5. Combining These Effects

Of the four distorting effects described above, only the
bond network and cation—cation repulsions are able to
direct the distortion. The other two effects, the lattice
stress and electronic distortion, show no directional pref-
erence. It is, therefore, the former, if present, that wili
determine the direction in which the cation will move out
of center.

All four effects will influence the magnitude of the dis-
tortion, but the total distortion is not just the sum of the
individual contributions, since the distortion produced,
for example, by the electronic effect may be sufficient to
relax both the lattice stress and the cation—cation repul-
sions as well. For this reason, it is often possible to model
the magnitude of the distortion using only Eqs. [4} and [5]
with the values of Cj given in Table 2.

The procedure used for modeling is then as follows:
The direction of the distortion must first be determined
by adding the distortion vector D predicted from the (un-

TABLE 2
Values of C; for Some d° Transition Metals.

Ion Cy (strengthened bond} C; (weakened bond)
Tit* 1.3 0.7
Ta’* 1.3 0.7
Nb3+ 1.4 0.6
Vi+{o} 1.6 0.1
1.6 0.7

Note. In each case, the weakened bond is frans to the strengthened
bond.

2 The extreme distortion observed around V5* required two different
C; pairs for the strongest and second strongest bonds.
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weighted) network equations (Table 1, column D) and the
distortion vector E predicted from the cation-cation re-
pulsion (Table 1, column E), to give the resultant shown
in column F of Table 1. Any bonds that lie within 65° of
the resultant distortion vector are given the higher weight
(Cy) shown in Table 2 and the bonds trans to these are
given the corresponding lower weight. Bonds lying more
than 65° from the distortion vector are given unit weight.
Equations [4] and [5] are then used to predict the bond
valences (Table 1, columns I and J).

The results of this procedure can be summarized in the
following statements:

(i) If the electronic distortion is weak (Sc*, Zr*t)
there are also no structural distortions observed.

(ii) If the electronic distortion is of moderate strength
(Ti**, Nb>*, Ta*"), distortions will only occur if structural
distortions are present. The direction of the distortion is
determined by the asymmetry in the bond network and
cation—cation repulsion if these are present. If only lat-
tice stress is present, the distortion can occur in either of
two or more symmetry breaking directions.

(iif} If the electronic distortion is large (V3+, MoS*,
W¢*) a distortion is observed in any case. Usually com-
pounds of these cations will crystallize with a bond net-
work that supports and directs the distortion. Com-
pounds in which no structural distortion is present are
rare.

{iv) A consequence of (i) to (iil) above is that the ab-
sence of any source of structural distortion will result in
the d° cation being in an undistorted environment, and
this can be used as a criterion to determine when an
electronically distorted structure can be expected.

3. EXAMPLES OF THE APPLICATION OF THE MODEL

In this section we apply these principles to a number of
systems of related structures to see how well the predic-
tions of bond length work. Each of the subsections below
discusses a group of related structures and the results of
the calculations are shown in Table 1 which, for each pair
of trans bonds, gives the unweighted network predictions
(columns B and C), the network distortion (D), the cat-
ion—cation repulsion distortion (E), the resultant pre-
dicted distortion vector (F), the weights assigned (G and
H), the predictions of the weighted network equations
(I and J}, and the observed valences (K and L). The root
mean square deviations between the predicted and ob-
served bond valences around each cation are also shown
in column (I).

3.1. Polymorphs of Ti,

As mentioned above, TiO; occurs in three polymorphs,
all of which have a symmetric bond graph and none of
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which shows lattice strain. The octahedra in rutile and
anatase share edges arranged in a symmetric way, the
cations lying on positions of 1 and 4 symmetry respec-
tively, so that the cation—cation repulsions cancel. The
octahedra in both these compounds are undistorted. The
third polymorph, brookite, differs only in that the octahe-
dral edges are shared asymmetrically, forcing the Ti*" ion
away from the center of the octahedron. In this case the
Ti*" environment is distorted. The predictions are shown
in Table 1. The assignment of weights is unambiguously
given by the cation—cation repulsion, but interestingly
the bond that is both predicted and observed to be the
strongest is not one of those given high weight, a fact that
lends credibility to the model.

3.2. Compounds with the Formula A*™B 3V 04

Many of the compounds with this formula crystallize
with the trirutile structure, a structure derived from rutile
with three Ti** cations replaced by A?* and 2B3* cations.
The 5-valent B cations found with this formula include
V3+, Nb**, Ta’*, As’*, and Sb>* but not all of these form
trirutiles; three additional structure types are also ob-
served, a hexagonal structure and the columbite and the
brannerite structures. Which of these is adopted has
much to do with the tendency for the cation to undergo
electronically driven distortions. The trirutile and hexag-
onal structures have the symmetrical bond graph shown
in Fig. 2a while columbite and brannerite have the less
symmetric bond graph shown in Fig. 2% for which net-
work distortions are predicted. All the structures are

FIG. 5.
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composed of chains of edge-sharing octahedra. In the
hexagonal structure the chains are further edge-linked to
form hexagonal sheets in a way that results in most of the
cation—cation repulsions canceling. Trirutile, columbite,
and brannerite each contain differently linked chains of
BO; octahedra (Fig. 5). In trirutile (Fig. 5a}, as in rutile,
the chains share opposite edges in a way that results in
the cation—cation repulsions canceling. In columbite the
octahedra share semiadjacent edges (Fig. 5b), and in
brannerite they share adjacent edges (Fig. 5¢) and are
further linked by shared edges into sheets, In columbite,
and particularly in brannerite, out-of-center distortions
are predicted as a result of cation-cation repulsion. The
agreement between prediction and observation for typi-
cal structures of each kind is generally good. However,
because the structures consist of paraltel chains of A and
B cations that in general are not commensurate, the real
structures show complex {but predictable) lattice strains
whose effects are not included in Table 1.

Because neither the bond network nor the cation—cat-
ion repulsion lead to out-of-center distortions in the
trirutile and hexagonal structures, these structures are
adopted by compounds in which £ = As, Sh, and Ta.
Columbite is adopted by compounds in which B = Nb
and brannerite, which, because of lattice stress, shows
the largest tendency to distortion, is adopted by com-
pounds with B = V.

3.3. Compounds of ABO,

These compounds fall into three structure classes: the
ilmenite structure in which both A and B are 6-coordi-

Chains of edge sharing octahedra: (a) straight chains in trirutile; (b) partially staggered chains in columbite; and {c) fully staggered

chains in brannerite (atom O1 lies behind atom O2). The arrows indicate the direction of cation displacements arising from cation—cation repulsion.
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nate, the LiNbQ, structure, which differs from the il-
menite structure only by a different (acentric) cation-
ordering scheme, and the perovskite structures in which
A 15 8- to 12-coordinate.

In the ilmenite structure, adopted by, e.g., MgTiO; and
the LiNbO;-structure, AQ¢ and BQs octahedra share
faces. The unweighted network equations predict no dis-
tortion but the cation—cation repulsion across the shared
face results in both A and B atoms moving away from
each other along the threefold axis. This is modeled, as
shown in Table 1, by giving low weight to the three B-0O
bonds directed to the shared face. The agreement is satis-
factory even though the weighted network model does
not predict the observed out-of-center displacement of
the A atoms.

The perovskite structure is a simple cubic network of
corner linked BO; octahedra with the A atom in the cen-
ter of the cube formed by the B atoms. The A atoms are
12-coordinate and the B atoms 6-coordinate. There are no

shared edges or faces between the octahedra so cation— -

cation repuision is absent, but the ideal cubic perovskite
structure is, in almost every case, a strained structure,
because the A-O and B-0 bond lengths are both deter-
mined by the single free parameter in the structure, the
lattice spacing, agp. Lattice stress must therefore be
present if the ratio r(A-0)/r(B~0) is not exactly V2. The
degree of mismatch can best be expressed by the ratio of
the lattice dimension predicted from the ideat A—O bond
length (a, = V2 X r(A-0)) and the lattice dimension
predicted from the ideal B—O bond length (az = 2 X
r(B-O). If a,/ap is less than 1.0 the A atoms are too
small, the A—O bonds will be in tension and the B-0O
bonds in compression. If @s/ap is greater than 1.0 the
B-0 bonds will be in tension and the A-Q bonds in com-
pression. According to the distortion theorem, the struc-
ture will relax to give a distorted environment around the
atom whose bonds are in tension, This gives rise to two
kinds of distorted structures. For compounds with a,/ag
< 1.0, the linked BOg octahedra twist so as to increase
the length of some A-O bonds while decreasing the
length of the others. For compounds with a,/ag > 1.0 the
B atom goes out-of-center in its octahedron, a distortion
that is consistent with the electronic distortions expected
around B transition metal ions. It is convenient to deal
with these two cases separately and then, finally, to con-
sider the special case of SrTiO; where a,/ag = 1.0.

Rotationally distorted perouvskites. Rotation of the
network of BO; octahedra is expecied for perovskites in
which a4/ag < 1.0, that is for compounds with relatively
small A atoms such as Ca and Na. The rotation can occur
in varying degrees around two orthogonal axes, so that
the nature and extent of the rotation will be different in
cach compound and, indeed, will vary with ternperature.
For convenience we consider only the room temperature
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structures. Although the A atom still has 12 neighboring
O atoms, some of them are at distances that are normally
not regarded as bonding, though the boundary between
bonding and nonbonding distances is somewhat arbi-
trary. Different choices for the boundary will result in
different bond networks and different predictions of bond
valence. This is not a serious problem, since the differ-
ences are only of order 0.04 vu, but it introduces some
uncertainty into the predictions made with the network
equations since these depend critically on which atoms
are connected by bonds. In this study a distance is con-
sidered a bond if its observed bond valence exceeds
0.038 - V, where V is the oxidation state of the cation.

Predictions are given for three rotationally distorted
perovskites, one each with B = Ti**, Ta’*, and Nb°*. The
compressive lattice strain in the B—O bonds will inhibit
any tendency for the B atom to go out of center. It is not
surprising, therefore, to find that both CaTiO; and Na
TaQ, adopt structures in which the B atom is restricted
by symmetry to be at the center of its octahedron. The
situation in NaNbQj is more complex. In this compound,
not only is Nb intrinsically more unstable to electronic
distortion than either Ti or Ta, but the ratio g4/az is also
closer to 1.0, indicating that the lattice-induced compres-
sion in the Nb—O bonds is smaller. At least five noncubic
phases have been reported for NaNbQ;, and the phase
observed at room temperature has Nb displaced out of
center in its octahedron, in addition to the expected rota-
tion. The unweighted network equations predict a small
out-of-center displacement for Nb but, as mentioned
above, this displacement is largely an artifact of the arbi-
trary cutoff in the coordination sphere of Na. The ob-
served distortion adopts a different direction and, in the
absence of any other criterion, the weights have been
assigned to match this observation. In all three of these
structures the agreement between the predicted and ob-
served valences is good (Table 1).

Cut-of-center distorted perovskites. Perovskites with
aslag > 1.0 are expected to distort with B moving out of
center in its coordination sphere. Such a distortion has
the potential of being ferroelectric, as observed in BaTiO;
and KNbQ;, both of which have three ferroelectric non-
cubic phases with Ti displaced toward a corner, an edge,
and a face of the octahedron, respectively, as the temper-
ature is reduced. Our model does not predict which of
these phases will be the most stable, but is does aflow us
to make predictions of the bond lengths in each case. In
this analysis we examine the room temperature struc-
tures. For BaTiQ, this is the tetragonal phase in which
Ti** moves toward the corner of the octahedron and for
KNbOQ; it is the orthorhombic phase in which Nb%*
moves toward the edge of the octahedron. Because nei-
ther bond network nor cation—cation repulsion distor-
tions are present, there is no preferred direction for the
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distortion and it is a matter of chance which way it will
occur. The choice of which bonds to weight is therefore
arbitrary. Satisfactory agreement between the predicted
and observed bond valence is found for both compounds
when weights are assigned to those bonds which are ob-
served to be the strongest and the weakest. However, the
out-of-center distortion does not completely remove the
lattice strain. Even with the bond distortion, the A-G
bonds are still strongly compressed (bond valence sum at
Ba’t = 2.73 vu, at K* = 1,80 vu) and the B-O bonds are
stretched (bond valence sums at Ti** = 3.68 vu, at
Nb* = 4.80 vu).

Surprisingiy, KTaO; remains cubic at least down to
I K in spite of the large a4/ag ratio but the bond strain in
cubic KTaQ; is not much different from that in
orthorhombic KNbO; with the valence sum at KX = 1.87
vu and at Ta = 4.91 vu. In this compound the cubic
structure must be stabilized by the high compressibility
of the K atoms but recent work (15) suggests that, despite
the macroscopic cubic symmetry, the local symmetry
around Ta is distorted in the same way as it is in SrTiO;,
as discussed below.

SrTi0;. Strontium titanate is unusual in that the ratio
as/ap is almost exactly 1.00 so there is no lattice strain to
produce a distortion. At room temperature it is cubic but
it undergoes a rotational distortion below 104 K. The
predicted bond valences for the undistorted structure
shown in Table 1 agree well with those observed. How-
ever, recent experimental results (16) suggest that at
room temperature both the Ti and O atoms are displaced
away from their ideal cubic positions in a way that is
consistent with a model in which the Ti atom is randomly
displaced by 0.12 A from the center of a reguiar octahe-
dron of O atoms, exactly the displacement predicted us-
ing weighted bond network equations.

3.4. Titanyl and Vanadyl Structures

The characteristic features of these compounds, are
single chains of corner-sharing BO; octahedra linked by
tetrahedral AQ, ions. Since the octahedra only share cor-
ners, there is no cation—cation repulsion.

Because, in most of these compounds, adjacent B at-
oms along the chains are related by symmetry, the net-
work equations usually predict that all the B~O bonds
afong the chain have the same vaience, Under these cir-
cumstances, one might expect undistorted coordination,
at least for B = Ti**, Ta’*, and possibly Nb*". However,
displacing the B atoms along the chain (axial direction)
does not affect any other bonds in the structure and,
hence, the distortion causes no loss of structural energy.
In modeling these compounds we assume that the axial
direction is the direction of major distortion. Distortions
in the other (equatorial) directions are not expected un-
less specifically required by the structure.
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In V,05 the major distortion is along the chain, but the
unweighted network equations indicate that a distortion
is also expected along one of the equatorial axes. The
network equations with both these sets of bonds
weighted gives satisfactory agreement with observation
(Table 1),

Compounds with the formula BOAQ, crystallize in two
different forms., Compounds with the « structure have
straight BO chains (O—B-0 = 180°) with each of the AO,
ions linking four different chains. In the 8 structure the
AQy ion links only three chains, but to one of these it
forms bonds to two adjacent B atoms, resulting in the
chain being bent with a B—~O-B angle of around 135°
Many compounds are known with one or the other of
these structures. NbOPO, adopts the « structure and
TaQPOQ, the 8, while VOPO, occurs in both forms. The
structure of TaQPO, is omitted from Table 1 since its
structure is not sufficiently well determined, but SbOPO,
is included as an example of a compound where distor-
tion is neither expected nor found.

The tetragonal a structure has a large lattice stress,
since the ¢ axis length is determined by both the length of
the axial B—O bonds and by the spacing between the AO,
ions which form columns with interionic O-0O contacts of
only 2.8-2.9 A. The AQ, columns are compressed and
the BO chains stretched, resulting in the distortion being
enhanced by the lattice stress. For this reason, the envi-
ronment of V in a-VOPQO, is more distorted than in 8-
VOPQ,, and the distortion in a-NbOPQ, is larger than
predicted (Table 1).

Related to the BOAO, structures are the CBOAOQO,
structures in which additional C ions have been intro-
duced into the spaces between the chains and the anions.
CaTi08iQy, titanite, has a structure closely related to 8-
BOAQ, but KTiOPO, and KTiOAsQ4 have a different
structure with the AQ, tetrahedra tinking only two chains
and the chains running along two mutually perpendicular
directions. The chains in the latter case also differ from
those in the other structures in that alternate BQOg octahe-
dra link through cis bonds. The assignment of weights for
the trans BOg octahedron is straightforward; in the case
of the cis octahedron we have chosen to weight both the
bonds that form the chain and the bonds trans to them.
The requirement for alternating bonds along the chain
leads to a weighting that is counter to that suggested by
the unweighted network equations. The predictions tend
to underestimate the distortion in one direction and over-
estimate it in the other.

4. CONCLUSIONS

We have shown that 4 transition metal cations in octa-
hedral coordination are susceptible to out-of-center dis-
tortions in an amount that increases with increasing
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FIG. 6. Predicted bond valences versus observed bond valences for
the bonds listed in Table 1. The lines show the region in which predic-
tion and observation differ by less than 0.1 vu.

charge and decreases with increasing size. Whether a
distortion will occur in a particular compound depends in
part on the strength of the electronic effect (the HOMO—
LUMO gap) and in part on the ability of the rest of the
structure to support such a distortion. In most cases
where an electronic distortion is found, the effect is also
supported by a structural distortion caused by either the
nature of the bond network, lattice stress, or cation—cat-
ton repulsion, and that the structural effects become
larger as the electronic effect increases. Structural and
electronic effects are mutually supportive and are not
easy to separate.

The electronic effect itself does not determine in which
direction the cation moves out of center. This is deter-
mined by the bond network or the cation-cation repul-
sion if these effects are present, otherwise the direction
of displacement must break a symmetry of the structure
and can occur in one of several possible directions. We
have proposed a way of estimating the magnitude of the
displacement using a form of weighted network equations
with weights that are transferable between compounds of
a given cation, and with these we have been able to repro-
duce reasonably well the observed distortions. Although
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we have examined a large number of different com-
pounds, in this paper we have chosen to illustrate only a
few simple related structures, to give a flavor for the kind
of agreement that can be expected. This agreement is
illustrated in Fig. 6, which plots the predicted against the
observed bond valences from Table 1. In most cases, the
predictions, which cover the range from 0.1 to 1.8 vu, lie
within 0.1 vu of the observed values.
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